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Monte Carlo simulation of the transmission of measles: Beyond the mass action principle
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We present a Monte Carlo simulation of the transmission of measles within a population sample during its
growing and equilibrium states by introducing two different vaccination schedules of one and two doses. We
study the effects of the contact rate per unit timej as well as the initial conditions on the persistence of the
disease. We found a weak effect of the initial conditions while the disease persists whenj lies in the range
1/L – 10/L ~L being the latent period!. Further comparison with existing data, prediction of future epidemics
and other estimations of the vaccination efficiency are provided. Finally, we compare our approach to the
models using the mass action principle in the first and another epidemic region and found the incidence
independent of the number of susceptibles after the epidemic peak while it strongly fluctuates in its growing
region. This method can be easily applied to other human, animal, and plant diseases and includes more
complicated parameters.
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I. INTRODUCTION

The mathematical investigation of disease transmiss
was initiated by Bernoulli three centuries ago@1#, but this
field started to grow considerably only at the begining of
twentieth century when Hamer, in his attempt to underst
the recurrence of measles epidemics, assumed that the
dence~rate of new cases! depends on the product of th
densities of susceptibles and infectives@2#. This assumption
is now the basis of the modern mathematical epidemiol
and is known as themass action principle. Epidemiological
models using this principle are widely reviewed in the lite
ture @3–5#. Basically, they formulate the flow patterns b
tween three classes of population: the susceptibles (S), the
infectives (I ), and the recovered~R! that are immune eithe
by a vaccination or by the disease itself. Some more com
cated models increase the number of classes to five by
cluding the class of passively immune individuals due
maternal antibodies~M! and that of exposed ones~E! during
the latent period@4,5#. The mathematical formulation of
classical SIR ~susceptibles-infectives-recovered! model
yields a set of coupled first-order differential equations:

dI

dt
5bI

S

N
2gI 2mI , ~1!

dS

dt
52bI

S

N
1m2mS, ~2!

dR

dt
5gI 2mR. ~3!

HereN denotes the total population number,b the transmis-
sion rate,g the recovery rate,m the death rate, andm the
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number of births per unit time. When the population reach
its equilibrium, the rate of births becomes equal to that
deaths (m5mN). The transmission rate depends, in gene
on both the infective and infected ages and becomes a
tinuous matrix with elementsbaa8 describing the probability
by unit time of infecting a susceptible of agea by an infec-
tive of agea8. It is in practice impossible to solve the abov
equations with such a continuous matrix that is reduced
general to a 535 matrix within cohorts of age called ‘‘who
acquires infection from whom’’~WAIFW! @4,5#. This rate
depends also on genetic and spatial heterogeneities. In
case of measles there is no genetic heterogeneity but
spatial dependence has been shown by some geome
models such as small world networks@6# and cellular au-
tomata@7# to affect sensitively the dynamics of epidemic
Some empirical models were proposed within the framew
of the SIR equations@4,5# to take into account the spatia
heterogeneity either by including anN dependence ofb with
an exponentv or proposing more complicated algebraic
expressions tob, but this rate depends in fact on a comp
cated distribution of the number of acquaintances betw
individuals @6,8#. Models based on the previous equatio
are widely used both to predict epidemics@9# and to optimize
the vaccination schedule@10#, or even to find the critical
coverage to eradicate the disease@4#.

However, the mass action principle neglects the fluct
tions and its validity was shown recently to be limited
many cases@11#. Furthermore, since only infectives and su
ceptibles contribute to the incidence, theN dependence of
this principle is questionable at first glance. In Eqs.~1!–~3!
the S dependence is linear and is easier to handle, but
could lead to an underestimation of the data as found in N
Zealand@9#, where some epidemics were observed before
predicted dates. Also the rateb ~which is fixed in the above
equations! should change asymptotically depending
whether the incidence is much larger or much smaller th
the number of receptivesS.

On the other hand, the estimation of the vaccination e
ciency should take into account the distribution of susc
tibles among the cohorts of vaccination age. For exam
©2002 The American Physical Society08-1
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if in a given population all susceptibles are within ages
low that at which the vaccination holds, it will not be effi
cient. The number of susceptibles among cohorts of age
impossible to measure for the whole population because
need an extensive serological investigation that is very
pensive. Therefore, it seems necessary to simulate by a
approach the dynamics of the infection in order to exam
the temporal behavior of the disease and also to check
cases where the mass action principle is not applicable.

This is the aim of the present paper, where we us
Monte Carlo simulation of measles propagation in a popu
tion for a period of 250 years~from 1850 to 2100! in order to
take into account the growing periods in the steady state
the equilibrium~N constant!. We investigate the effect of th
initial conditions and the contact rate on the temporal dep
dence of the infection as well as the vaccination efficien
~we have introduced two different vaccination schedule!.
We compare our numerical data to the existing one in O
~Algeria! and our incidence to that of Eqs.~1! and~2! based
on the mass action principle.

II. DESCRIPTION OF THE METHOD

The present algorithm is inspired by that used in parti
physics~GEANT! where particles are followed within differ
ent detectors to estimate their geometrical acceptance@12#.
We start increasing time by steps of one day from the da
~i.e., January 1, 1850! towards 250 years. In each step w
generatem new births and attribute to them maternal an
bodies with random lifetimes following an exponentially d
creasing distribution. In order to take into account the f
that only 20% remain naturally immune at 9 months wh
they lose all their antibodies after 15 months@4,13#, the dis-
tribution of remaining maternal antibodies (Pab) reads

Pab~ t !5H exp~20.345t !, t<15 months

0 otherwise
. ~4!

When losing their natural antibodies they change to the s
ceptible class and the vector element S(a) of agea ~in days!
is incremented. In the same step we generatem times the
death agea8 from a distribution centered at the life expec
ancy and remove the corresponding susceptibles from th
vector. We considerm constant (m5100) in this paper, lead
ing, in the absence of infectives, to a linear growth with tim
T of the number of susceptibles (S5mT). We assume also a
delta-peak distribution of deaths at 100 yr in order to ens
a constant total population at equilibrium and show the
pendence onN of the incidence in this case. This choice w
affect only the equilibrium date, since the infection hol
mainly below 20 years of age. After a timeT, we introduce
an external infective individual~coming from another
sample! assumed to be at the end of its latent period tha
removed after its infection period~7 days!. The timeT al-
lows us to adjust the number of initial susceptibles before
infection. This infectiveattacksj susceptibles per day~j is
the contact rate per unit time and per infective and co
sponds tobS/N in the above equations!. The new infected
persons are removed from the corresponding elements o
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vector S and increment the number of infectedI, and after
the latent period (L57) they become infective and incre
ment the number of infectivesI 1 and remove them fromI
before being removed fromI 1 at the end of their infection
period, so that the recovery periodg21 is 14 days. During
their infection period each new infectiveattacksan average
of j susceptibles per day and so on. The age of the sus
tibles to be infected is generated randomly with a probabi
distribution

P~ai !55
25%; ai<5 y

45%; 5,ai<10 y
20%; 10,ai<15 y
9%; 15,ai<20 y

1%; ai.20 y

. ~5!

We vary this age within62 years until finding a susceptibl
having an age in this range. If not found, we do not inc
ment I. We neglect the spatial heterogeneity by consider
an average contact rate~it is possible to use a distribution!,
and assume the incidence independent of the age of in
tives that corresponds to the case WAIFW 3~it is possible to
include the age of infectives by using in this algorithmI and
I 1 as vectors!. The probability distributionP(a) was chosen
from the average distribution of infected persons within t
same cohort of age in developing countries where the in
tion seems to have an average age in the scholar ages@14#. In
developed countries this average age is slightly higher.

We introduce two vaccination programs in periods cor
sponding to the case of Algeria. The first vaccination sch
ule in 1970 provides one dose at 9 months and the sec
one in 1995 providing two doses at 9 months and 2 ye
~other ages of the second dose administration are discu
below to compare with the data of Algeria!. Note here that
the first dose fails for all persons losing their maternal an
bodies after 9 months. The coverage is fixed at 80% in
rest of the paper. These parameters simulate the average
ation in the countries administrating a double-dose vacc
tion schedule. The quantitiesS, I, and I 1 are recorded by
steps of 14 days whileI 21S21dI/dS ~the incidence per in-
fective and per infected! is recorded by steps of 1 day t
compare our incidence with Eqs.~1! and ~2!. In order to
show the persistence of the disease within the whole pe
of the simulation, we need a sufficiently high contact ra
between susceptibles enabling the first epidemic peak.
recent paper, we found within the framework of a sm
world network the number of connections between susc
tibles for a childhood disease randomly distributed betwe
1 and 6 at the threshold concentration of susceptibles lea
to an epidemic state@see Fig. 3~b! of @8##. Therefore, since
the infection period is 7 days, an epidemic situation hold
we choosej50.5 corresponding to an average number
acquaintance of about 3. The value ofj is fixed for the rest of
the paper except when it is varied. This algorithm takes
average computation time of about 5 h in Pentium III 600
MHz personal computers. It is obviously possible to intr
duce in this algorithm complicated distributions ofj, birth
and death rates, vaccination age, and latent period, but w
them in this paper.
8-2
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III. RESULTS AND DISCUSSION

In Fig. 1, we show the temporal dependence of the nu
ber of infected and susceptible persons for two different s
ations for the initial date of infection:T52 days and 20
years, to compare the cases of low and high density of
ceptibles with respect to the total population number. For
demographic situation described in this paper~m constant!,
the first case corresponds to only 100 susceptibles, whil
the second one we have 730 000 susceptibles in the sam
After the first strong epidemic peak whose amplitude
pends on the number of susceptibles, the number of infe
~and susceptibles!, which oscillates as a function of time i
the steady state, shows a similar amplitude for the two ini
conditions with a slight variation of the interepidemic peri
~due to the nonlinear aspect of the infection process!, which
can influence the measure of the number of predicted ca
On the other hand, since measles appeared before the
century the first case (T52 days! appears more realistic. Th
persistence of the disease concerns the whole period o
simulation@in Fig. 1~a!#, although we introduced a two-dos
vaccination schedule. The one- and two-dose schedules s
to decrease the average numbers of susceptibles and inf
peaks by about 60% and 90%, respectively. A simple esti
tion taking into account the coverage and the vaccina
failure due to its annihilation with maternal antibodies yiel
rates slightly higher~64% for the one dose and 94% for tw
doses!. In fact, this estimation assumes that the element
the vectorS are filled ~100 susceptibles! at the age of the
vaccination that is not the case here.

FIG. 1. Predicted temporal evolution~between 1850 and 2100!
of the cases~a! and susceptibles~b! by thousands forj50.5 and
two different first infection dates:T52 days andT520 years. The
arrows show the dates of introduction of the first and second v
cination schedules.
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The effect of the contact ratej in the caseT52 days is
shown in Fig. 2. This parameter seems to affect significan
both the incidence and the interepidemic period. The am
tudes of the infection peaks~and the average number of su
ceptibles! decrease asj increases. The first epidemic peak
stronger than the other ones and occurs after a period
creasing asj increases~the same behavior holds for the in
terepidemic period!. Indeed, initially the number of suscep
tibles is much smaller than the incidence that decreases
effective contact ratejeff5P(a)j below the recovery rate
(jeff,g), while the number of susceptibles grows linear
with time in this period. As a consequence, the propaga
remains endemic until the timeT1 ~at which the first epi-
demic peak occurs! satisfying the following equation:

jP~T1!22g50. ~6!

The factor 2 means that the first term concerns the infect
I 1 while the second one is the rate of all infectedI that are
twice I 1 , it corresponds to 1/Lg in a general disease. IfT1 is
within the same class, it behaves asj21 with a threshold
jmin52g. The number of susceptibles@Fig. 2~b!# reaches its
maximum when the total incidence corresponds to the b
rate (jeffPI1 5m), while after the epidemic peaksjeff5jmin
andS reaches its minimum. The interepidemic period see
to decrease slightly during the vaccination periods but
amplitude of the peaks depends on the number of sus
tibles at the age of the vaccination that decreases asj in-
creases. This can be seen in Fig. 2~a! for j50.3, where both
the first and second vaccination schedules decrease s

c-

FIG. 2. Predicted temporal evolution~from 1850 to 2020! of the
cases~a! and susceptibles by thousands for three different value
j: 0.3, 1, and 2. The arrows show the dates of introduction of
first and second vaccination schedules.
8-3
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NOUREDINE ZEKRI AND JEAN PIERRE CLERC PHYSICAL REVIEW E65 046108
tively the epidemic peaks, while ifj increases this effec
becomes weaker up to a critical contact rate where all s
ceptibles have smaller ages than the vaccination one. Th
shown forj52, where the first epidemic peak is as strong
all susceptibles are infected and the effective value of
rate is sufficiently large to infect all new susceptibles@see
Fig. 2~a!#, so thatS50 and the number of infected remain
constantI 5m/g during the whole period. This is the case
the minimum value ofjeff is larger than 2g. Indeed, since the
age of infection varies within a range of62 years, even if
there are susceptibles having only 1 day, from Eq.~4! they
are infected with a probability of 10% and the correspond
effective contact rate isj/10. Consequently, the critical con
tact rate above which all the new susceptibles are infecte
jc520g510/L. Note in this case that neither vaccinatio
schedule affects the number of infected or susceptibles s
all the infected persons are within their first year of ag
Therefore, the range of the contact rate necessary to ens
persistent disease propagation is

1/L,j,10/L. ~7!

In the asymptotic limit of vanishingL the disease does no
persists, while ifL is very large any small contact rate mak
the disease persistent.

Now let us compare our results with the existing data
Oran ~Algeria! in the period 1994–1997@15#. We use the
second dose at 6 years; that is the case in this countr
good agreement is shown for the period 1994–1996, whil
1997 the number of cases is significantly different~as shown
in Table I!. We think that the contact ratej used here simu-
lates a real one but the birth rate could change leading to
increase of the interepidemic period. Indeed, the birth r
significantly decreased in this country at the end of the eig
ies due to different social events. The vaccinated childre
1996 were born in 1990 and their rate decreased, implying
increase of the interepidemic period that was initially abou
years. Therefore, a more accurate simulation should take
account the real variation of the demographic situation.

The effect of the age of the second dose on the incide
of the virus is shown in Fig. 3, where we compare in t
period 1990–2020 the evolution of the number of infec
for two different ages~2 and 6 years!. The vaccination at 2
years decreases significantly the infected peaks in comp
son with those at 6 years, while it increases the interepide
period. From this figure, we deduce a reduction of the p
dicted numbers of infected of about 87%, 77%, 78%, a
79% for the periods between 1995 and 2000, 2005, 20
and 2020, respectively. We expect from 1995 to 2020 ab
12 800 cases if the vaccination is at 6 years and about 2

TABLE I. Comparison of the simulation forj50.5 and a vac-
cination at 6 years with the data of Oran~Algeria! during the period
~1994–1997!.

Year 1994 1995 1996 1997

Simulation data 90 773 219 816
Data of Oran@14# 86 655 179 286
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cases at 2 years. We expect also from the above compa
with the data in Oran an epidemic peak in this city in 2002
the birth rate does not change.

Let us now compare our results to those using the m
action principle in Eqs.~1! and~2!. Already from Figs. 1 and
2 we deduce that both the incidence and the serological s
ation ~number of susceptibles! does not depend on the tota
population number since the oscillations remain with t
same amplitude and period~interepidemic period! in both the
growing period~before 1950! and the equilibrium one~after
this dateN is constant!. In Fig. 4, we show the variation o
I 21S21dI/dt with the number of susceptibles in two diffe
ent regions: the two sides of the first epidemic peak@Figs
4~a! and 4~b!# and those of another one at equilibrium@Figs.
4~c! and 4~d!#. We see in the regions whereI increases@Figs.
4~a! and 4~c!# strong fluctuations of this quantity withSwith
a power law variation in a part of Fig. 4~c!, in the case of a
small number of susceptibles~due to an endemic peak!. In
the regions of decreasingI @Figs. 4~b! and 4~d!# this quantity
decreases as a power law withS with an exponent close to
unity, indicating the independence of the incidence in E
~1! and ~2! on the number of susceptibles. This discrepan
with the mass action principle is due to the saturation effe
shown in our approach based on the contact ratej. Indeed,
the behavior in the decreasing regions~after the peak! is due
to the fact that the number of susceptibles is much sma
than the incidencejI 1 ~I 1 is large in this region! which var-
ies in this case independently ofS ~the decrease is mainly
governed by the recovery rateg!, while in the increasing
regions, the fluctuations are due to the stochastic behavio
the distributionP(a) in Eq. ~4!. Therefore, the expression o
the incidence in the mass action principle should take i

FIG. 3. Predicted temporal evolution~from 1990 to 2020! of the
cases~lower curves! and susceptibles~upper curves! by thousands
for j50.5 and two different ages of administration of the seco
vaccination dose: 6 years~solid curves! and 2 years~dotted curves!.
8-4
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MONTE CARLO SIMULATION OF THE TRANSMISSION . . . PHYSICAL REVIEW E65 046108
account these asymptotic situations based on the contac
for a realistic prediction of disease propagation.

IV. CONCLUSION

We presented a Monte Carlo simulation of measles tra
mission in a population having a constant birth rate with
250 years. In this simulation, we introduced realistic para
eters such as distribution of the lifetime of the maternal

FIG. 4. Incidence normalized to the infected and susceptib
~x1027 per day! as a function of the number of susceptibles
thousands forj50.5 in four different situations of the propagatio
of the disease:~a! before the first epidemic peak,~b! after the first
epidemic peak,~c! before an epidemic peak chosen in the equil
rium, and~d! after this epidemic peak. The solid lines show line
fits.
e

e
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tibodies, the latent and infection periods, and two differe
vaccination schedules. We fixed the life expectancy at 1
years to ensure a constant population number. Although
value is high and not realistic, it does not change the gen
behavior of our results. We found the disease to be persis
for a contact ratej between 1/L and 10/L with interepidemic
periods depending onj andm, while the disease propagatio
is only slightly affected by the initial conditions, although w
expected a nonlinear behavior predicting an unstable ev
tion. This investigation allowed us to predict both the ef
ciency of the vaccination and future epidemic peaks.
compared our simulation results with existing data~from
1994 to 1997! in the city of Oran~Algeria! which has a
similar demographic situation as well as approximately id
tical periods of the vaccination as used in this paper.
found a good agreement for the first 3 years while the nu
ber of simulated cases is higher for the fourth one, proba
due to the variation of the birth rate at the beginning of t
last decade in this country. We showed also that a seco
dose vaccination at 2 years reduces the number of case
more than 75% within the next two decades in comparis
with a vaccination at 6 years~occurring in Algeria!. This
suggests that 75% of the children between 2 and 6 years
naturally infected. Finally, we compared our results to t
incidence suggested by the mass action principle and fou
discrepancy due to the asymptotic behavior of the incide
when the number of susceptibles is small compared to
incidence.

Therefore, this algorithm seems to be more realistic a
can be easily extended to other human, animal, and p
diseases only by introducing the corresponding parame
and distributions. Since the spatial heterogeneity was cha
terized by a distribution of connections in a recent work
the small world network@8# and the disease propagation d
pends mainly on the connections, we can introduce this
erogeneity only by including the right distribution. It is als
possible to combine this algorithm with the small world ne
work to take into account the spatial heterogeneity.
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