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Monte Carlo simulation of the transmission of measles: Beyond the mass action principle
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We present a Monte Carlo simulation of the transmission of measles within a population sample during its
growing and equilibrium states by introducing two different vaccination schedules of one and two doses. We
study the effects of the contact rate per unit tighas well as the initial conditions on the persistence of the
disease. We found a weak effect of the initial conditions while the disease persistséviberin the range
1/L-10L (L being the latent period Further comparison with existing data, prediction of future epidemics
and other estimations of the vaccination efficiency are provided. Finally, we compare our approach to the
models using the mass action principle in the first and another epidemic region and found the incidence
independent of the number of susceptibles after the epidemic peak while it strongly fluctuates in its growing
region. This method can be easily applied to other human, animal, and plant diseases and includes more
complicated parameters.
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I. INTRODUCTION number of births per unit time. When the population reaches
its equilibrium, the rate of births becomes equal to that of
The mathematical investigation of disease transmissiofleaths (h=uN). The transmission rate depends, in general,
was initiated by Bernoulli three centuries affbj, but this  on both the infective and infected ages and becomes a con-
field started to grow considerably only at the begining of thetinuous matrix with elementg,, describing the probability
twentieth century when Hamer, in his attempt to understan®y unit time of infecting a susceptible of ageby an infec-
the recurrence of measles epidemics, assumed that the inéive of agea’. Itis in practice impossible to solve the above
dence (rate of new casesdepends on the product of the equations with such a continuous matrix that is red‘l‘Jced in
densities of susceptibles and infectiiéd. This assumption 9e€neral to a %5 matrix within cohorts of age called *who

is now the basis of the modern mathematical epidemiologcduires infection from whom1WAIFW) [4,5]. This rate
and is known as thenass action principleEpidemiological depends also on genetic and spatial heterogeneities. In the

: C i - . ; : case of measles there is no genetic heterogeneity but the
models using this principle are widely reviewed in the litera- . .
ture [3-5]. Basically, they formulate the flow patterns be- spatial dependence has been shown by some geometrical

g h | ¢ lation: th i models such as small world network8] and cellular au-
ween three classes of population: the susceptis he  y,41a77] to affect sensitively the dynamics of epidemics.

infectives (), and the recovere(R) that are immune either gome empirical models were proposed within the framework
by a vaccination or by the disease itself. Some more compligs the SIR equation$4,5] to take into account the spatial
cated models increase the number of classes to five by itheterogeneity either by including &hdependence g8 with
Cluding the CIaSS Of paSSively immune indiVidUalS due thn exponenb or proposing more Comp|icated a|gebraica|
maternal antibodieéM) and that of exposed on€g) during  expressions tg8, but this rate depends in fact on a compli-
the latent period4,5]. The mathematical formulation of a cated distribution of the number of acquaintances between
classical SIR (susceptibles-infectives-recovejedmodel  individuals [6,8]. Models based on the previous equations
yields a set of coupled first-order differential equations: are widely used both to predict epidemj€$ and to optimize

the vaccination schedulgl0], or even to find the critical

di | S . ;)  coverage to eradicate the disefdp
at AN el @ However, the mass action principle neglects the fluctua-
tions and its validity was shown recently to be limited in
ds IS many casefl1]. Furthermore, since only infectives and sus-
a=—,3| N+m—MS, 2 ceptibles contribute to the incidence, tNedependence of

this principle is questionable at first glance. In E(B—(3)
the S dependence is linear and is easier to handle, but this
3) could lead to an underestimation of the data as found in New
Zealand 9], where some epidemics were observed before the
predicted dates. Also the rag(which is fixed in the above
HereN denotes the total population numbgrthe transmis-  equationy should change asymptotically depending on
sion rate,y the recovery rateu the death rate, anth the  whether the incidence is much larger or much smaller than
the number of receptiveS
On the other hand, the estimation of the vaccination effi-
*Email address: zekri@mail.univ-usto.dz ciency should take into account the distribution of suscep-
"Email address: clair@iusti.univ-mrs.fr tibles among the cohorts of vaccination age. For example,
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if in a given population all susceptibles are within ages bevector S and increment the number of infectédand after
low that at which the vaccination holds, it will not be effi- the latent period I(=7) they become infective and incre-
cient. The number of susceptibles among cohorts of ages i®ent the number of infectivels; and remove them fronh
impossible to measure for the whole population because theyefore being removed frorh, at the end of their infection
need an extensive serological investigation that is very experiod, so that the recovery periad * is 14 days. During
pensive. Therefore, it seems necessary to simulate by a neweir infection period each new infectiatacksan average
approach the dynamics of the infection in order to examinef & susceptibles per day and so on. The age of the suscep-
the temporal behavior of the disease and also to check thiébles to be infected is generated randomly with a probability
cases where the mass action principle is not applicable.  distribution

This is the aim of the present paper, where we use a

Monte Carlo simulation of measles propagation in a popula- 25%; aj<5y

tion for a period of 250 yeard§rom 1850 to 210Din order to 45%; 5<a;<10y

take into account the growing periods in the steady state and P(a)={ 20%; 10<a;<15Yy, (5)
the equilibrium(N constant We investigate the effect of the 9%; 15<a; <20y

initial conditions and the contact rate on the temporal depen- 1%:; a,>20y

dence of the infection as well as the vaccination efficiency

(we have introduced two different vaccination schedules e vary this age within=2 years until finding a susceptible
We compare our numerical data to the existing one in Oramgaying an age in this range. If not found, we do not incre-
(Algeria) and our incidence to that of Eqfél) and(2) based  mentl. We neglect the spatial heterogeneity by considering

on the mass action principle. an average contact rati is possible to use a distributipn
and assume the incidence independent of the age of infec-
Il. DESCRIPTION OF THE METHOD tives that corresponds to the case WAIFWIt3s possible to

include the age of infectives by using in this algorithrand
| , as vectors The probability distributiorP(a) was chosen
from the average distribution of infected persons within the
ame cohort of age in developing countries where the infec-
on seems to have an average age in the scholarfaggsn
eveloped countries this average age is slightly higher.

We introduce two vaccination programs in periods corre-

The present algorithm is inspired by that used in particl
physics(GEANT) where particles are followed within differ-
ent detectors to estimate their geometrical acceptfhZe
We start increasing time by steps of one day from the date
(i.e., January 1, 18500wards 250 years. In each step we 4
generatem new births and attribute to them maternal anti-

bodie_s; With ra_ndo_m lifetimes following an exponentially de- sponding to the case of Algeria. The first vaccination sched-
creasing d|s(t)r|but|on_. In order to_ take into account the fz_ictule in 1970 provides one dose at 9 months and the second
that only 20% remain na_turally immune at 9 monthS.Wh'leone in 1995 providing two doses at 9 months and 2 years
they !ose all thelr gntlbodles after l5 m.onﬂ4$13], the dis- (other ages of the second dose administration are discussed
tribution of remaining maternal antibodieB () reads below to compare with the data of AlgeriaNote here that
the first dose fails for all persons losing their maternal anti-
exp(—0.343), t<15months 4) bodies after 9 months. The coverage is fixed at 80% in the
0 otherwise ' rest of the paper. These parameters simulate the average situ-
ation in the countries administrating a double-dose vaccina-
When losing their natural antibodies they change to the sugion schedule. The quantitie§ |, and 1, are recorded by
ceptible class and the vector elemena)5¢f agea (in days  steps of 14 days whilé~ S~ 1dI/dS (the incidence per in-
is incremented. In the same step we generatdmes the fective and per infectedis recorded by steps of 1 day to
death agea’ from a distribution centered at the life expect- compare our incidence with Eq¢l) and (2). In order to
ancy and remove the corresponding susceptibles from the $how the persistence of the disease within the whole period
vector. We considem constant (fn=100) in this paper, lead- of the simulation, we need a sufficiently high contact rate
ing, in the absence of infectives, to a linear growth with timebetween susceptibles enabling the first epidemic peak. In a
T of the number of susceptibleS€ mT). We assume also a recent paper, we found within the framework of a small
delta-peak distribution of deaths at 100 yr in order to ensurevorld network the number of connections between suscep-
a constant total population at equilibrium and show the detibles for a childhood disease randomly distributed between
pendence ol of the incidence in this case. This choice will 1 and 6 at the threshold concentration of susceptibles leading
affect only the equilibrium date, since the infection holdsto an epidemic statgsee Fig. 8) of [8]]. Therefore, since
mainly below 20 years of age. After a tinTe we introduce the infection period is 7 days, an epidemic situation holds if
an external infective individual(coming from another we chooseé=0.5 corresponding to an average number of
sample assumed to be at the end of its latent period that isscquaintance of about 3. The value£as fixed for the rest of
removed after its infection periot? days. The timeT al-  the paper except when it is varied. This algorithm takes an
lows us to adjust the number of initial susceptibles before thaverage computation time of akob h in Pentium 11 600
infection. This infectiveattacks¢ susceptibles per dai¢ is ~ MHz personal computers. It is obviously possible to intro-
the contact rate per unit time and per infective and correduce in this algorithm complicated distributions &fbirth
sponds toBS/N in the above equationsThe new infected and death rates, vaccination age, and latent period, but we fix
persons are removed from the corresponding elements of ttieem in this paper.

Pab(t) =

046108-2



MONTE CARLO SIMULATION OF THE TRANSMISSION . ..

PHYSICAL REVIEW 5 046108

1850 1900 1950 2000 2050 2100 1850 1855 1860 1960 1980 2000 2020
400 T T T T v T T Pl SN T e e ]
2) — T-2days ofbd 1stVac. 2ndvac. |
T T=20 years 40 -_ i
1st vac.2nd vac. 30 e
2 I -
(‘é_ 800 L- 1 0= A I [ =

1031

700 — T=2days - 250 - —£-03
------- T=20 —-e-ge
e50 L years | 2wl /1 Al | §=; i
%) (]
2 2 150 - 1
100 | .
or/ W
F/ oy NN NN L WA AN I r e a Mrras
: [0 "- ST ZNG NN P S S S R m
0 L . L . P P N/ N I S
1850 1900 1950 2000 2050 2100 1850 1855 1860 1960 1980 2000 2020

Time (Years) Time (Years)

FIG. 1. Predicted temporal evolutighetween 1850 and 21D0

of the casega) and susceptiblegb) by thousands fog=0.5 and . g
two different first infection datesE=2 days andr =20 years. The caseqa) and susceptibles by thousands for three different values of

arrows show the dates of introduction of the first and second vact: 0-3: 1, and 2. The arrows show the dates of introduction of the
cination schedules. first and second vaccination schedules.

FIG. 2. Predicted temporal evolutigfrom 1850 to 202pof the

The effect of the contact ratéin the caser =2 days is
lll. RESULTS AND DISCUSSION shown in Fig. 2. This parameter seems to affect significantly

In Fig. 1, we show the temporal dependence of the numboth the incidence and the interepidemic period. The ampli-
ber of infected and susceptible persons for two different situtudes of the infection peakand the average number of sus-
ations for the initial date of infectionT=2 days and 20 ceptibles decrease agincreases. The first epidemic peak is
years, to compare the cases of low and high density of sugtronger than the other ones and occurs after a period de-
ceptibles with respect to the total population number. For théreasing ag increasegthe same behavior holds for the in-
demographic situation described in this pafrerconstant, ~ terepidemic period Indeed, initially the number of suscep-
the first case corresponds to only 100 susceptibles, while ifibles is much smaller than the incidence that decreases the
the second one we have 730000 susceptibles in the sampRkffective contact ratef.=P(a)é below the recovery rate
After the first strong epidemic peak whose amplitude de{&e<7), while the number of susceptibles grows linearly
pends on the number of susceptibles, the number of infectedith time in this period. As a consequence, the propagation
(and susceptibl@swhich oscillates as a function of time in remains endemic until the tim&; (at which the first epi-
the steady state, shows a similar amplitude for the two initiademic peak occujssatisfying the following equation:
conditions with a slight variation of the interepidemic period
(due to the nonlinear aspect of the infection progesbich
can influence the measure of the number of predicted cases.
On the other hand, since measles appeared before the 19the factor 2 means that the first term concerns the infectives
century the first caseTl(= 2 days appears more realistic. The |, while the second one is the rate of all infectethat are
persistence of the disease concerns the whole period of thwicel,, it corresponds to 1/, in a general disease. T; is
simulation[in Fig. 1(a)], although we introduced a two-dose within the same class, it behaves &s' with a threshold
vaccination schedule. The one- and two-dose schedules seém,=2y. The number of susceptibl¢Eig. 2(b)] reaches its
to decrease the average numbers of susceptibles and infecte@ximum when the total incidence corresponds to the birth
peaks by about 60% and 90%, respectively. A simple estimarate (£.Pl; =m), while after the epidemic pealk&s= &min
tion taking into account the coverage and the vaccinatiorand Sreaches its minimum. The interepidemic period seems
failure due to its annihilation with maternal antibodies yieldsto decrease slightly during the vaccination periods but the
rates slightly highe(64% for the one dose and 94% for two amplitude of the peaks depends on the number of suscep-
dose$. In fact, this estimation assumes that the elements ofibles at the age of the vaccination that decrease§ ias
the vectorS are filled (100 susceptiblgsat the age of the creases. This can be seen in Figa)Zor £=0.3, where both
vaccination that is not the case here. the first and second vaccination schedules decrease sensi-

EP(Ty)—2y=0. (6)
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TABLE I. Comparison of the simulation fof=0.5 and a vac- 60
cination at 6 years with the data of Oréilgeria) during the period
(1994-1997.

Year 1994 1995 1996 1997
Simulation data 90 773 219 816
Data of Oran14] 86 655 179 286

tively the epidemic peaks, while if increases this effect
becomes weaker up to a critical contact rate where all sus-
ceptibles have smaller ages than the vaccination one. This is
shown foré= 2, where the first epidemic peak is as strong as
all susceptibles are infected and the effective value of this
rate is sufficiently large to infect all new susceptibjese

Fig. 2(@)], so thatS=0 and the number of infected remains
constant =m/+y during the whole period. This is the case if

the minimum value ot is larger than 2. Indeed, since the A WL
age of infection varies within a range df2 years, even if 1990 1995 2000 2(;05 ' 2o|1'c'u”' 2015 2020
there are susceptibles having only 1 day, from &.they
are infected with a probability of 10% and the corresponding
effective contact rate i§/10. Consequently, the critical con- FIG. 3. Predicted temporal evolutigfrom 1990 to 202pof the
tact rate above which all the new susceptibles are infected isases(lower curves and susceptible@ipper curvesby thousands
¢£.=20y=10L. Note in this case that neither vaccination for £&=0.5 and two different ages of administration of the second
schedule affects the number of infected or susceptibles sinc&iccination dose: 6 yeafsolid curveg and 2 yeargdotted curveps

all the infected persons are within their first year of age.

Therefore, the range of the contact rate necessary to ensure a

1031/1038

Time (Years)

persistent disease propagation is cases at 2 years. We expect also from the above comparison
with the data in Oran an epidemic peak in this city in 2002 if
1L <é<10L. (7)  the birth rate does not change.

Let us now compare our results to those using the mass

In the asymptotic limit of vanishind the disease does not action principle in Eqs(1) and(2). Already from Figs. 1 and
persists, while ifL is very large any small contact rate makes 2 we deduce that both the incidence and the serological situ-
the disease persistent. ation (number of susceptiblegloes not depend on the total

Now let us compare our results with the existing data ofpopulation number since the oscillations remain with the
Oran (Algeria) in the period 1994—-199715]. We use the same amplitude and perigihterepidemic periodin both the
second dose at 6 years; that is the case in this country. growing period(before 1950 and the equilibrium onéafter
good agreement is shown for the period 1994—-1996, while iithis dateN is constant In Fig. 4, we show the variation of
1997 the number of cases is significantly differéag shown | ~*S™dI/dt with the number of susceptibles in two differ-
in Table ). We think that the contact rateused here simu- ent regions: the two sides of the first epidemic pégigs
lates a real one but the birth rate could change leading to af(a) and 4b)] and those of another one at equilibrifiFigs.
increase of the interepidemic period. Indeed, the birth raté(c) and 4d)]. We see in the regions wheréncreases$Figs.
significantly decreased in this country at the end of the eight4(a) and 4c)] strong fluctuations of this quantity witBwith
ies due to different social events. The vaccinated children i@ power law variation in a part of Fig(e), in the case of a
1996 were born in 1990 and their rate decreased, implying asmall number of susceptibldglue to an endemic pepkin
increase of the interepidemic period that was initially about 2he regions of decreasindFigs. 4b) and 4d)] this quantity
years. Therefore, a more accurate simulation should take intdecreases as a power law wiBwith an exponent close to
account the real variation of the demographic situation.  unity, indicating the independence of the incidence in Egs.

The effect of the age of the second dose on the incidencél) and (2) on the number of susceptibles. This discrepancy
of the virus is shown in Fig. 3, where we compare in thewith the mass action principle is due to the saturation effects
period 1990-2020 the evolution of the number of infectedshown in our approach based on the contact éatedeed,
for two different ageg2 and 6 years The vaccination at 2 the behavior in the decreasing regidater the peakis due
years decreases significantly the infected peaks in comparie the fact that the number of susceptibles is much smaller
son with those at 6 years, while it increases the interepidemithan the incidencél (I, is large in this regionwhich var-
period. From this figure, we deduce a reduction of the preies in this case independently &8f(the decrease is mainly
dicted numbers of infected of about 87%, 77%, 78%, andyoverned by the recovery ratg, while in the increasing
79% for the periods between 1995 and 2000, 2005, 2010ggions, the fluctuations are due to the stochastic behavior of
and 2020, respectively. We expect from 1995 to 2020 abouhe distributionP(a) in Eq. (4). Therefore, the expression of
12800 cases if the vaccination is at 6 years and about 274fe incidence in the mass action principle should take into
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140 145 150 155 1 10 100 tibodies, the latent and infection periods, and two different
a0 vaccination schedules. We fixed the life expectancy at 100
N K years to ensure a constant population number. Although this
value is high and not realistic, it does not change the general
behavior of our results. We found the disease to be persistent
for a contact rat€ between 1. and 10L with interepidemic
1100 periods depending ofiandm, while the disease propagation
is only slightly affected by the initial conditions, although we
expected a nonlinear behavior predicting an unstable evolu-
- tion. This investigation allowed us to predict both the effi-
o sz S PP ciency of the vaccination and future epidemic peaks. We
compared our simulation results with existing dafeom
1994 to 1997 in the city of Oran(Algeria) which has a
similar demographic situation as well as approximately iden-
tical periods of the vaccination as used in this paper. We
11000 found a good agreement for the first 3 years while the num-
ber of simulated cases is higher for the fourth one, probably
due to the variation of the birth rate at the beginning of the
{100 last decade in this country. We showed also that a second-
dose vaccination at 2 years reduces the number of cases by
more than 75% within the next two decades in comparison
with a vaccination at 6 yearéccurring in Algeria. This
oSt suggests that 75% of the children between 2 and 6 years are
14 naturally infected. Finally, we compared our results to the
incidence suggested by the mass action principle and found a
discrepancy due to the asymptotic behavior of the incidence
103 S when the number of susceptibles is small compared to the
incidence.

FIG. 4. Incidence normalized to the infected and Susceptibles Therefore, this a|gorithm seems to be more realistic and
(x1077 per day as a function of the number of susceptibles by can be easily extended to other human, animal, and plant
thousands fo€= 0.5 in four different situations of the propagation iseases only by introducing the corresponding parameters
of the disease(a) before the first epidemic peak)) after the first oy gistributions. Since the spatial heterogeneity was charac-
epidemic peak(c) before an epidemic peak chosen in the equilib-yo ;04 by 4 distribution of connections in a recent work on
rjum, and(d) after this epidemic peak. The solid lines show linear the small world network8] and the disease propagation de-
fits. pends mainly on the connections, we can introduce this het-
account these asymptotic situations based on the contact ragé(;%?g}glt% ngt?iﬁéntﬂiusdggotr?tir;:gvr\;;[tr? Itsr;{zbsur;[:glrll.vxl/glrls dar|15e(:-
for a realistic prediction of disease propagation. work to take into account the spatial heterogeneity.

11000

d)

10-7 I11S-1 dl/dt

100

10 {10

1 10 100 1 10 100
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